5 research outputs found

    Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae)

    Get PDF
    Termites have evolved diverse defence strategies to protect themselves against predators, including a complex alarm communication system based on vibroacoustic and/or chemical signals. In reaction to alarm signals, workers and other vulnerable castes flee away while soldiers, the specialized colony defenders, actively move toward the alarm source. In this study, we investigated the nature of alarm communication in the pest Reticulitermes flavipes. We found that workers and soldiers of R. flavipes respond to various danger stimuli using both vibroacoustic and chemical alarm signals. Among the danger stimuli, the blow of air triggered the strongest response, followed by crushed soldier head and light flash. The crushed soldier heads, which implied the alarm pheromone release, had the longest-lasting effect on the group behaviour, while the responses to other stimuli decreased quickly. We also found evidence of a positive feedback, as the release of alarm pheromones increased the vibratory communication among workers and soldiers. Our study demonstrates that alarm modalities are differentially expressed between castes, and that the response varies according to the nature of stimuli

    Complex alarm strategy in the most basal termite species

    No full text
    Studying basal taxa often allows shedding a light on the evolution of advanced representatives. The most basal termite species, Mastotermes darwiniensis, possesses unique morphological and behavioural traits, of which many remain scarcely studied. For these reasons, we conducted a comprehensive study of the alarm communication in this species and compared its components to behavioural modes described in other termites. In M. darwiniensis, the alarm is communicated by substrate-borne vibrations resulting from vertical vibratory movements. Another similar behaviour consists in longitudinal movements, by which the alarm is delivered to other termites in contact with alerted individual. Both these two behavioural modes could be used in synergy to create complex movements. M. darwiniensis also uses chemical alarm signals produced by labial gland secretion, in contrast to Neoisoptera in which this function is fulfilled exclusively by the frontal gland secretion. Moreover, we demonstrated in M. darwiniensis the presence of a positive feedback mechanism thought to occur exclusively in the crown group Termitidae. This positive feedback consists in both oscillatory movements of alerted individuals in response to alarm signals and release of alarm pheromone by excited soldiers. Our results confirm that M. darwiniensis is a remarkable example of mosaic evolution, as it combines many primitive and advanced features, and its alarm communication clearly belongs to the latter category
    corecore